

India's Most Comprehensive & the Most Relevant Test Series designed according to the latest pattern of exams!

JEE MAIN

JEE ADV.

WBJEE

MHT CET

and many more...

Click here to join Test Series for 2022

It's time for you to crack upcoming IIT JEE Main & Advanced and other competitive exams with India's Most Trusted Online Test Series. Many questions at JEE Main 2021 were same/similar to the ones asked in our test series. That's the power of our test series!

Trusted by thousands of students & their parents across the nation

Our result in JEE Main 2021

150+

Got 99+ percentile (overall)

301

Got **99+ percentile** in one or more subjects

85%

Improved their score by **25 percentile**

89%

Felt **overall confident** after the test series

Click here to join Test Series for 2022

FREE Question Bank & Previous Year Questions for

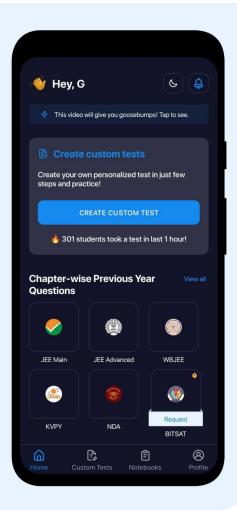
JEE MAIN

JEE ADV.

BITSAT W

WBJEE MHT CET

and many more...



Why download MARKS?

- Chapter-wise PYQ of JEE Main, JEE Advanced, NEET, AIIMS, BITSAT, WBJEE, MHT CET etc.
- Chapter-wise NTA Abhyas questions
- Taily practice challenge and goal completion
- Bookmark important questions and add them to your notebooks
- Create unlimited Custom Tests

And all this for FREE. Yes, FREE! So what are you waiting for, download MARKS now.

4.8

Rating on Google Play

30,000+

Students using daily

1,00,000+

Questions available

Tangents and Normals

1. GEOMETRICAL INTERPRETATION OF THE DERIVATIVE

Let y = f(x) be a given function. Its derivative f'(x) or $\frac{dy}{dx}$ is equal to the trigonometrical tangent of the angle which tangent to the graph of the function at the point (x,y) makes with the positive direction of x-axis. Therefore $\frac{dy}{dx}$ is the slope of the tangent.

Thus
$$f'(x) = \frac{dy}{dx} = \tan \Psi$$

Hence at any point of a curve y = f(x)

- (i) Inclination of the tangent (with x-axis) = $tan^{-1} \left(\frac{dy}{dx} \right)$
- (ii) Slope of the tangent = $\frac{dy}{dx}$
- (iii) Slope of the normal = $-\frac{1}{\left(\frac{dy}{dx}\right)} = -\left(\frac{dx}{dy}\right)$
- (iv) Slope of the tangent at (x_1, y_1) is denoted by $\left(\frac{dy}{dx}\right)_{(x_1, y_1)}$
- (v) Slope of the normal at (x_1, y_1) is denoted by $\left(-\frac{dx}{dy}\right)_{(x_1, y_1)}$

2. EQUATION OF TANGENT

(i) The equation of tangent to the curve y = f(x) at (x_1, y_1) is $(Y - y_1) = \left(\frac{dy}{dx}\right)_{(x_1, y_1)} (X - x_1)$

Slope of tangent =
$$\left(\frac{dy}{dx}\right)_{(x_1,y_1)}$$

(ii) If a tangent is parallel to the axis of x then $\Psi = 0$

$$\therefore \frac{dy}{dx} = tan\Psi = tan0 = 0 \implies \boxed{\frac{dy}{dx} = 0}$$

(iii) If the equation of the curve be given in the parametric form say x = f(t) and y = g(t), then

$$\frac{dy}{dx} = \left(\frac{dy}{dt}\right) / \left(\frac{dx}{dt}\right) = \frac{g'(t)}{f'(t)}$$

The equation of tangent at any point 't' on the curve is given by
$$y - g(t) = \frac{g'(t)}{f'(t)} (x - f(t))$$

[1]

(v) If the tangent is perpendicular to the axis of x, then $\Psi = \frac{\pi}{2}$

$$\therefore \frac{dy}{dx} = tan\Psi = tan\frac{\pi}{2} = \infty \implies \boxed{\frac{dx}{dy} = 0}$$

- (vi) Q The value of Ψ always lie in $(-\pi, \pi]$
- (vii) If the tangent at any point on the curve is equally inclined to both the axes then $\left(\frac{dy}{dx}\right) = \pm 1$

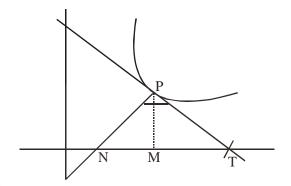
4. LENGTH OF THE TANGENT

$$PT = y \cos ec \, \Psi = y \sqrt{1 + \cot^2 \Psi}$$

$$= \left| y \sqrt{\left\{ 1 + \left(\frac{dx}{dy} \right)^2 \right\}} \right| \quad \text{or} \quad \left| \frac{y \sqrt{1 + (dy/dx)^2}}{(dy/dx)} \right|$$

5. LENGTH OF SUB-TANGENT

$$TM = y \cot \Psi = \frac{y}{\tan \Psi} = \left| y \frac{dx}{dy} \right|$$
 or $\frac{y}{(dy/dx)}$



6. EQUATION OF NORMAL

The equation of normal

(i) at the point $P(x_1, y_1)$ on the curve Y = f(x) is

$$y - y_1 = -\frac{1}{\left(\frac{dy}{dx}\right)_{(x_1, y_1)}} (x - x_1)$$

$$\boxed{y-y_{\scriptscriptstyle 1} = -\Bigg(\frac{dx}{dy}\Bigg)_{\!\!(x_{\scriptscriptstyle 1},y_{\scriptscriptstyle 1})}\Big(x-x_{\scriptscriptstyle 1}\Big)}$$

Slope of normal =
$$-\frac{1}{\text{slope of tan gent}} = -\frac{1}{\left(\frac{dy}{dx}\right)}$$

(ii) If the normal is parallel to the axis of y, then $\Rightarrow \Psi = 0$

$$\therefore \frac{dy}{dx} = \tan \Psi = \tan \theta = 0$$

(iii) If the normal is parallel to the axis of x, then $\therefore \frac{dx}{dy} = 0$

Tangent and Normals [3]

7. LENGTH OF NORMAL

$$PN = y \sec \Psi \quad = y \sqrt{1 + \tan^2 \Psi} = \left| y \sqrt{\left\{ 1 + \left(\frac{dy}{dx} \right)^2 \right\}} \right|$$

8. LENGTH OF SUB-NORMAL

$$MN = y \tan \Psi = \left| y \frac{dy}{dx} \right|$$

9. ANGLE OF INTERSECTION OF TWO CURVES

If two curves $y = f_1(x)$ and $y = f_2(x)$ intersect at a point p, the angle between their tangents at p is defined as the angle between these two curves at p. But slopes of tangents at P are $\left(\frac{dy}{dx}\right)_1$ and $\left(\frac{dy}{dx}\right)_2$ So at p their angle of intersection ψ is given by

$$tan \psi = \frac{\left(\frac{dy}{dx}\right)_{1} - \left(\frac{dy}{dx}\right)_{2}}{1 + \left(\frac{dy}{dx}\right)_{1} \left(\frac{dy}{dx}\right)_{2}} \qquad \text{or} \qquad tan \psi = \pm \frac{m_{1} - m_{2}}{1 + m_{1}m_{2}}$$

1. If two curves cut perpendicular then $\psi = \frac{\pi}{2}$

$$\left(\frac{dy}{dx}\right)_1 \left(\frac{dy}{dx}\right)_2 = -1$$
 or $m_1 m_2 = -1$

2. If two curves are parallel $\psi = 0^{\circ}$

$$\left(\frac{dy}{dx}\right)_1 = \left(\frac{dy}{dx}\right)_2 \text{ or } m_1 = m_2$$

10. ROLLE'S THEOREM

If a function f(x) is defined on [a,b] satisfying

- (i) f is continuous on [a,b]
- (ii) f is differentiable on (a,b)
- (iii) f(a) = f(b) then there exists $c \in (a,b)$; Such that f'(c) = 0

11. LANGRAGE'S MEAN VALUE THEOREM

If a function f(x) is defined on [a,b] satisfying

- (i) f is continuous on [a,b]
- (ii) f is differentiable on (a,b) then there exists $c \in (a,b)$ Such that $f'(c) = \frac{f(b) f(a)}{b a}$